Convert nodeupdate to non-recursive
This took me a while to figure out. We no longer visit all 9 block around and with the touched node, but instead visit adjacent plus self. We then walk -non- recursively through all neigbors and if they cause a nodeupdate, we just keep walking until it ends. On the way back we prune the tail. I've tested this with 8000+ sand nodes. Video result is here: https://youtu.be/liKKgLefhFQ Took ~ 10 seconds to process and return to normal.
This commit is contained in:
parent
2eeb62057a
commit
d7908ee494
|
@ -147,7 +147,7 @@ end
|
|||
-- Some common functions
|
||||
--
|
||||
|
||||
function nodeupdate_single(p, delay)
|
||||
function nodeupdate_single(p)
|
||||
local n = core.get_node(p)
|
||||
if core.get_item_group(n.name, "falling_node") ~= 0 then
|
||||
local p_bottom = {x = p.x, y = p.y - 1, z = p.z}
|
||||
|
@ -160,36 +160,84 @@ function nodeupdate_single(p, delay)
|
|||
core.get_node_level(p_bottom) < core.get_node_max_level(p_bottom))) and
|
||||
(not core.registered_nodes[n_bottom.name].walkable or
|
||||
core.registered_nodes[n_bottom.name].buildable_to) then
|
||||
if delay then
|
||||
core.after(0.1, nodeupdate_single, p, false)
|
||||
else
|
||||
n.level = core.get_node_level(p)
|
||||
core.remove_node(p)
|
||||
spawn_falling_node(p, n)
|
||||
nodeupdate(p)
|
||||
end
|
||||
n.level = core.get_node_level(p)
|
||||
core.remove_node(p)
|
||||
spawn_falling_node(p, n)
|
||||
return true
|
||||
end
|
||||
end
|
||||
|
||||
if core.get_item_group(n.name, "attached_node") ~= 0 then
|
||||
if not check_attached_node(p, n) then
|
||||
drop_attached_node(p)
|
||||
nodeupdate(p)
|
||||
return true
|
||||
end
|
||||
end
|
||||
|
||||
return false
|
||||
end
|
||||
|
||||
function nodeupdate(p, delay)
|
||||
-- Round p to prevent falling entities to get stuck
|
||||
-- This table is specifically ordered.
|
||||
-- We don't walk diagonals, only our direct neighbors, and self.
|
||||
-- Down first as likely case, but always before self. The same with sides.
|
||||
-- Up must come last, so that things above self will also fall all at once.
|
||||
local nodeupdate_neighbors = {
|
||||
{x = 0, y = -1, z = 0},
|
||||
{x = -1, y = 0, z = 0},
|
||||
{x = 1, y = 0, z = 0},
|
||||
{x = 0, y = 0, z = 1},
|
||||
{x = 0, y = 0, z = -1},
|
||||
{x = 0, y = 0, z = 0},
|
||||
{x = 0, y = 1, z = 0},
|
||||
}
|
||||
|
||||
function nodeupdate(p)
|
||||
-- Round p to prevent falling entities to get stuck.
|
||||
p = vector.round(p)
|
||||
|
||||
for x = -1, 1 do
|
||||
for y = -1, 1 do
|
||||
for z = -1, 1 do
|
||||
local d = vector.new(x, y, z)
|
||||
nodeupdate_single(vector.add(p, d), delay or not (x == 0 and y == 0 and z == 0))
|
||||
end
|
||||
end
|
||||
-- We make a stack, and manually maintain size for performance.
|
||||
-- Stored in the stack, we will maintain tables with pos, and
|
||||
-- last neighbor visited. This way, when we get back to each
|
||||
-- node, we know which directions we have already walked, and
|
||||
-- which direction is the next to walk.
|
||||
local s = {}
|
||||
local n = 0
|
||||
-- The neighbor order we will visit from our table.
|
||||
local v = 1
|
||||
|
||||
while true do
|
||||
-- Push current pos onto the stack.
|
||||
n = n + 1
|
||||
s[n] = {p = p, v = v}
|
||||
-- Select next node from neighbor list.
|
||||
p = vector.add(p, nodeupdate_neighbors[v])
|
||||
-- Now we check out the node. If it is in need of an update,
|
||||
-- it will let us know in the return value (true = updated).
|
||||
if not nodeupdate_single(p) then
|
||||
-- If we don't need to "recurse" (walk) to it then pop
|
||||
-- our previous pos off the stack and continue from there,
|
||||
-- with the v value we were at when we last were at that
|
||||
-- node
|
||||
repeat
|
||||
local pop = s[n]
|
||||
p = pop.p
|
||||
v = pop.v
|
||||
s[n] = nil
|
||||
n = n - 1
|
||||
-- If there's nothing left on the stack, and no
|
||||
-- more sides to walk to, we're done and can exit
|
||||
if n == 0 and v == 7 then
|
||||
return
|
||||
end
|
||||
until v < 7
|
||||
-- The next round walk the next neighbor in list.
|
||||
v = v + 1
|
||||
else
|
||||
-- If we did need to walk the neighbor, then
|
||||
-- start walking it from the walk order start (1),
|
||||
-- and not the order we just pushed up the stack.
|
||||
v = 1
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
|
|
Loading…
Reference in New Issue